

Alexandria Arlington Resource Recovery Facility

Fiscal Year 2026 First Quarter Operations Report

November 2025

Prepared by: HDR Engineering, Inc. 2650 Park Tower Dr, Suite 400 Vienna, VA 22180

1.0	PURP	OSE OF REPORT	. 5
2.0	EXEC	UTIVE SUMMARY	. 5
3.0	FACIL	ITY INSPECTION AND RECORDS REVIEW	. 6
	3.1	Facility Performance	10
	3.2	Utility and Reagent Consumptions	26
	3.3	Safety & Environmental Training	27
4.0	FACIL	ITY MAINTENANCE	27
	4.1	Availability	28
	4.2	Facility Housekeeping	29
5.0	ENVIF	RONMENTAL	
	5.1	Nitrogen Oxide Emissions	31
	5.2	Sulfur Dioxide Emissions	31
	5.3	Carbon Monoxide Emissions	31
	5.4	Opacity	32
	5.5	Daily Emissions Data	32
	5.6	Ash System Compliance	32
APPE	NDIX A	A FACILITY CEMS DATA	34
APPE	NDIX E	S SITE PHOTOS - OCTOBER 2025	38

Front Cover Photos

Top: South view of Facility
Middle: Tipping Floor Exit Door
Bottom: Electrical Switchyard

List of Tables

Table No.	Page No.
Table 1: Summary of Inspection Report Deficiencies	8
Table 2: Quarterly Performance Summaries	18
Table 3: Waste Delivery Classification	19
Table 4: Facility Utility and Reagent Consumptions	26
Table 5: Quarterly Facility Unit Availabilities	28
Table 6: Boiler Downtime – Q1FY26	29
Table 7: Turbine Generator Downtime – Q1FY26	
Table 8: Facility Housekeeping Ratings – October 2025	30
Table 9: Comparison of Statistical Results and Regulatory Thresholds for Metal Analytes	32
Table 10: Boiler No. 1 Monthly Summary for Reportable Emissions Data	
Table 11: Boiler No. 2 Monthly Summary for Reportable Emissions Data	36
Table 12: Boiler No. 3 Monthly Summary for Reportable Emissions Data	37
List of Charts	
Chart No.	Page No.
Chart 1: Tons of Waste Processed	
Chart 2: Tons of Ash Produced per Ton of Waste Processed	
Chart 3: Ferrous Recovery Rate	
Chart 4: Steam Production	
Chart 5: 12-Month Rolling Steam Production	
Chart 6: Steam Production Rate	
Chart 7: Boiler Capacity Utilization	16
Chart 8: Calculated Waste Heating Value	
Chart 9: Cumulative Total Waste Delivery	
Chart 10: Gross Electrical Generation	
Chart 11: Gross Conversion Rate	
Chart 12: Net Conversion Rate	
Chart 13: Net Conversion Rate	
Chart 14: Gross Turbine Generator Conversion Rate	
Chart 15: Ash Toxicity Characteristic Leaching Procedure (TCLP) Results	
Chart 16: Quarterly Ash Test Results	33

List of Figures

Figure No.	Page No.
Figure 1: Cooling tower siding, grounding wire, nozzle flow	39
Figure 2: Circulating Water Pump housing is corroded	
Figure 3: Siding and window repairs on East side of building	39
Figure 4: Spare transformer on site	39
Figure 5: Residential waste bin	39
Figure 6: Ash canopy appears in good condition	39
Figure 7: Temporary pump in service for trench drainage to Cooling Tower basin	40
Figure 8: New Circulation Water pump installed	40
Figure 9: Filtration tanks for Reverse Osmosis System	40
Figure 10: Blow down tank	
Figure 11: Firing aisle - no issues observed	40
Figure 12: Boiler No. 1 new Run 2 grate drive cylinder	40
Figure 13: Boiler No. 2 Economizer Rotary Sootblowers	41
Figure 14: Boiler No. 2 lagging detached and obstructing walkway	41
Figure 15: Refractory damaged around Rotary Sootblower G9B-11 on Boiler No. 1	41
Figure 16: Minor leak on Boiler No. 1 external piping has been repaired – Resolved Deficien	cy41
Figure 17: Steam leak repaired on west side of Boiler No. 2 – Resolved Deficiency	41
Figure 18: Insulation added around steam isolation valve on Boiler No. 3 Resolved Deficie	ency41
Figure 19: Seal air disconnected on Boiler No. 3 Rotary Sootblower G9-B09	
Figure 20: Penthouse lights are in service over Boiler No. 1 – Resolved Deficiency	42
Figure 21: Insulation and lagging damaged around Boiler No. 3 Steam Drum	
Figure 22: External Tube Leak on Boiler No. 2 right wall repaired	
Figure 23: Ferrous drum magnet with ongoing maintenance at the time of HDR site visit	
Figure 24: Cooling Water Tower decking clear of equipment and maintence items	
Figure 25: Unit 2 SDA Penthouse Enclosure	43
Figure 26: Unit 1 lower lime silo floor with significant corrosion – New Deficiency	
Figure 27: Debris and flyash covering decking inside Baghouse No. 1 Compartment Aisle	
Figure 28: Unit 1 baghouse hopper heaters on and in the manual position	43
Figure 29: Unit 2 fly ash double dump valves operating properly	43
Figure 30: Settling basin — no issues observed	43

Definition of Abbreviations & Acronyms

Abbreviation/Acronym Definition

APC Air Pollution Control

April Aug August Avg Average

BCU Boiler Capacity Utilization
Btu British thermal unit

CEMS Continuous Emissions Monitoring System

CO Carbon Monoxide
Dec December
Feb February

FMG Facility Monitoring Group

FY Fiscal Year gal Gallon

HCI Hydrochloric (Hydrogen Chlorides)

HDR HDR Engineering Inc

HHV Estimated Waste Heating Value (Btu/lb)

IDInduced DraftJanJanuaryJulJulyJunJune

klbs Kilo-pounds (1,000 lbs)

kWh Kilowatt hours (1,000 watt-hours)

IbsPoundsMarMarchMaxMaximumMayMayMinMinimum

MSW Municipal Solid Waste MWh Megawatt hours

No Number

 $\begin{array}{ccc} \text{NOV} & & \text{Notice of Violation} \\ \text{Nov} & & \text{November} \\ \text{NO}_x & & \text{Nitrogen Oxide} \\ \end{array}$

Oct October

OSHA Occupational Safety and Health Administration

ppm Parts per million

ppmdv Parts per million dry volume

Q1 First Quarter
Q2 Second Quarter
Q3 Third Quarter
Q4 Fourth Quarter

RAAI Reworld Alexandria Arlington, Inc.

SDA Spray Dryer Absorber

 $\begin{array}{ccc} \text{Sep} & & \text{September} \\ \text{SO}_2 & & \text{Sulfur Dioxide} \end{array}$

TCLP Toxicity Characteristic Leaching Procedure VADEQ Virginia Department of Environmental Quality

yr Year YTD Year to date

Alexandria/Arlington Waste-to-Energy Facility First Quarter Operations Report – Fiscal Year 2026

1.0 Purpose of Report

HDR Engineering, Inc. (HDR) was authorized by the Facility Monitoring Group (FMG) to conduct quarterly site assessments and provide quarterly reports regarding the operation and maintenance of the Reworld Alexandria/Arlington Waste-to-Energy Facility (Facility) for the 2026 Fiscal Year. This report is prepared for the first quarter of the 2026 Fiscal Year and summarizes Facility operations between July 1, 2025, and September 30, 2025. This report identifies the fiscal year beginning on July 1, 2025, as FY26 and the quarter beginning on July 1, 2025, as Q1FY26.

This report is based upon HDR's experience in the waste-to-energy industry, upon site observation visits and previous reports provided by HDR, and upon data provided by Reworld Alexandria/Arlington, Inc. (RAAI), the Facility owner and operator.

2.0 Executive Summary

RAAI operated the Facility in an acceptable manner and in accordance with established waste-to-energy industry practices during Q1FY26. The operation of the Facility, maintenance, safety, and overall cleanliness continue to be above average. The Facility experienced no environmental permit deviations throughout Q1FY26.

During Q1FY26, the boilers experienced three (3) instances of scheduled downtime totaling 242.8 hours, nine (9) instances of unscheduled downtime totaling 90.4 hours and two (2) instances of standby downtime totaling 145.5 hours. The turbine generators experienced three (3) instances of unscheduled downtime totaling 23.4 hours during the quarter and one (1) instance of standby time totaling 48.0 hours. A detailed listing of downtime is provided in Section 4.1 of this report.

Typical waste processed during the quarter was 965.2 tons per day, or 99.0% of nominal facility capacity which compares very favorably to industry averages.

Waste deliveries averaged 931.6 tons per day, which is lower (3.5%) than the burn rate.

Compared to the corresponding quarter in FY25, during Q1FY26 MSW processed was nearly identical (less than 0.1% lower), steam production decreased (4.0%), and electricity generated (gross) decreased (3.1%). The decrease in steam production was attributable to more (185 hours) offline time (unscheduled, scheduled and standby time) experienced by the boilers, as well as lower (2.5%) waste heating value, compared to Q1FY25. The decrease in electrical generation was attributable to the decrease in steam production offset by less (196.1 hours) turbine generator downtime.

3.0 Facility Inspection and Records Review

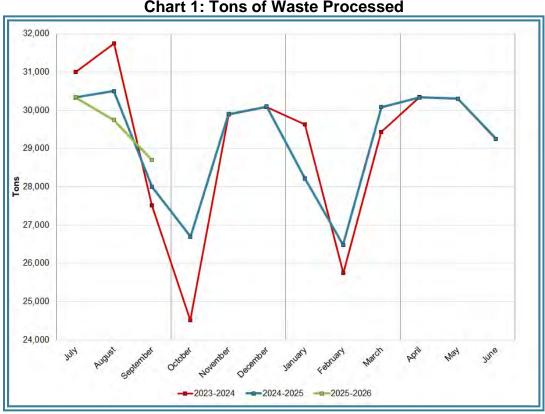
In October 2025, HDR met with the Facility management and other plant personnel to discuss Facility operations and maintenance, perform an independent visual inspection of the operating Facility, photograph areas of interest, and perform a review of recent Facility activity. HDR obtained operating data and monthly reports electronically from RAAI throughout the quarter and maintains a running tabulation of the status of corrective actions and plant performance trends. RAAI provides the following documents for each month:

- Facility Monthly Operating Reports
- Monthly Continuous Emissions Monitoring System (CEMS) Reports

Table 1 summarizes maintenance, repair, and plant condition issues reported during this and prior reporting periods. An "A" indicates an issue of the highest priority and worthy of immediate attention. Such items are usually safety or operability issues. A "B" indicates that the issue needs to be dealt with as quickly as possible but is not urgent. These items will usually result in a process improvement or will help avoid future "urgent" issues. A "C" indicates that the issue should be dealt with in due course but is not a priority issue. This category might include, but is not limited to issues related to aesthetics, non-urgent maintenance, or housekeeping improvements which are not safety related. Note that HDR site assessments are generally performed while equipment is operating, and are not intended to address the internal condition, performance or life expectancy of

mechanical, electrical, and electronic equipment and structures. HDR site assessments are only performed quarterly, generally representing findings on the day of the assessment. RAAI is responsible, without limitation, for operations, maintenance, environmental performance, and safety and should not rely on HDR observations or inspection reports which are overviews of Facility external conditions only.

Table 1: Summary of Inspection Report Deficiencies


*A is highest priority & demands immediate attention: B needs attention but is not urgent; C can be addressed at earliest opportunity & is not urgent.

Item No.	Inspection Report Deficiencies	Issue Reported	Priority*	HDR Recommendation	Status	Open / Closed
1	Pavement spider-cracking at Tipping Floor Entrance	November 2016	С	Resurface section of pavement at Tipping Floor Entrance	Status Unchanged	Open
2	SDA Penthouse No. 3 Door deteriorated at base	November 2017	С	Patch and Paint Door – Replace if necessary	Status Unchanged	Open
3	Deterioration on floor and wall behind lime slurry piping in SDA Penthouse No. 2	August 2019	С	Conduct painting preservation measures	Status Unchanged	Open
4	Siding deteriorated beneath Baghouse No. 3 Hoppers	August 2019	С	Replace siding	Status Unchanged	Open
5	Siding deteriorated on the north side of Baghouse No. 2	February 2020	С	Replace siding and conduct painting preservation measures	Status Unchanged	Open
6	Damaged/Missing insulation and lagging throughout Facility	August 2020	С	Perform audit of all steam piping and replace damaged/missing insulation and lagging throughout the Facility as needed	Status Unchanged	Open
7	Insulation and lagging damaged/deteriorated around Boiler No. 3 Steam Drum	February 2021	С	Replace insulation and lagging	Status Unchanged	Open
8	Baghouse hopper heaters set to manual; heater off but signaling low temperature.	February 2021	В	Repair hopper heaters	Status Unchanged	Open
9	Feed Chute Cooling Jacket Water Level Reservoirs (typical of 2) empty on Boilers No. 1	May 2021	В	Repair feed chute cooling jacket water level boxes	Status Unchanged	Open
10	Uneven water flow from Cooling Tower nozzle/distribution on southeast side of tower	August 2021	С	Repair nozzle	Nozzle flows appear even	Closed
11	A temporary pump is being utilized on the ground floor of the Turbine Hall to transport wastewater from the trench drains to the Cooling Tower basin.	November 2022	В	Consider a permanent pump installation in lieu of temporary.	Status Unchanged	Open
12	Siding and windows missing on the east side (near the Tipping Floor entrance).	May 2023	С	Repair/Replace siding.	New windows installed	Closed
13	Grounding wire not secured on southwest corner of Cooling Tower.	May 2023	В	Repair grounding wire.	Wire secured	Closed
14	Steam leak identified West side of Boiler No. 2 at auxiliary burner elevation	August 2024	В	Repair leak	Leak repaired – Refer to Figure 17	Closed
15	Insulation missing around main steam isolation valve on Boiler No. 3.	August 2024	С	Replace Insulation	Insulation Added – Refer to Figure 18	Closed
16	Cooling Tower siding deteriorated	August 2024	С	Repair siding	Siding all intact	Closed
17	Circulating Water Pump Housing corroded	August 2024	С	Replace housing	Status Unchanged	Open
18	Roof ventilation fan not operating above deaerator	August 2024	С	Repair fan	Status Unchanged	Open

Item No.	Inspection Report Deficiencies	Issue Reported	Priority*	HDR Recommendation	Status	Open / Closed
19	Refractory damaged around G9B-11 sootblower on Boiler No. 1	August 2024	С	Repair Refractory	Status Unchanged – Refer to Figure 15	Open
20	Minor leak on Boiler No. 1 external piping at LN Nozzle elevation	October 2024	С	Repair Leak	Leak repaired – Refer to Figure 16	Closed
21	Penthouse lights are out of service over Boiler No.	October 2024	С	Repair Lighting	Lights in service - Refer to Figure 20	Closed
22	Boiler No. 1 side wall of feed chute corroded/deteriorated	December 2024	В	Repair feedchute and perform painting preservation measures	Status Unchanged	Open
23	Sootblower seal air disconnected on Boiler No. 2 IK-09	April 2025	В	Repair connection	All seal air lines connected on Boiler No. 2	Closed
24	Sootblower seal air disconnected on Boiler No. 3 G9-B09	April 2025	В	Repair connection	Changed to Boiler No. 3 G9B-09 – Refer to Figure 19	Open
25	Boiler No. 3 feed chute deteriorated with visible holes	April 2025	В	Patch holes and perform painting preservation measures	Status Unchanged	Open
26	Entrance signage knocked over/covered with residential waste	June 2025	С	Fix signage with sturdier option	Moved further away from driveway	Closed
28	Air leaking from hydraulics on Boiler No. 2 Superheater double dump valves	June 2025	С	Repair air connections	Status Unchanged	Open
29	Insulation damaged from hanger on external steam line near Boiler No. 3 economizer rear wall	June 2025	С	Repair hanger support and fix insulation on pipe.	Status Unchanged	Open
30	External Tube Leak on Boiler No. 3 right wall	June 2025	В	Repair tube leak	Repaired	Closed
31	Unit 1 Lower Lime Silo with significant corrosion	October 2025	В	Repair flooring	New – Refer to Figure 26	Open

3.1 **Facility Performance**

Monthly operating data provided by RAAI indicates that 88,794 tons of MSW were processed during Q1FY26, and a total of 85,705 tons of MSW including 1,486 tons of Special Handling Waste (1.7% by weight) were received. Total ash production during the quarter was 16,912 tons, which represents 19.0% of the waste processed. The average uncorrected steam production rate for Q1FY26 was 2.97 tonssteam/tonwaste, which is lower (4.0%) than the corresponding quarter and attributable to lower (2.5%) HHV.

Chart 1: Tons of Waste Processed

Chart 1 illustrates that Q1FY26 waste processed was comparable (less than 0.1%) to the corresponding quarter in FY25. RAAI reported that 685 tipping floor/MSW internal inspections were performed during the quarter, and no notices of violation (NOVs) were issued.

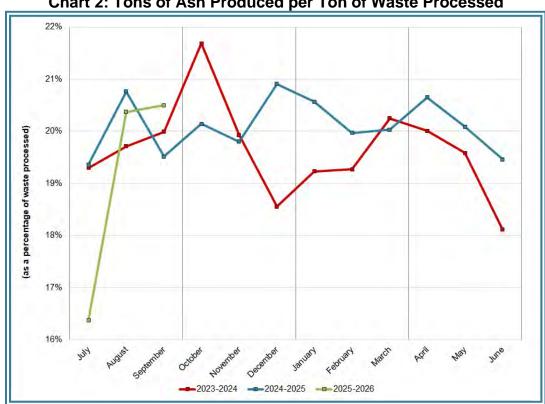


Chart 2: Tons of Ash Produced per Ton of Waste Processed

Chart 2 illustrates that the average ash production rate in Q1FY26 decreased 0.9 percentage points to 19.0% of processed waste compared to the corresponding quarter in FY25 when the rate was 19.9%.

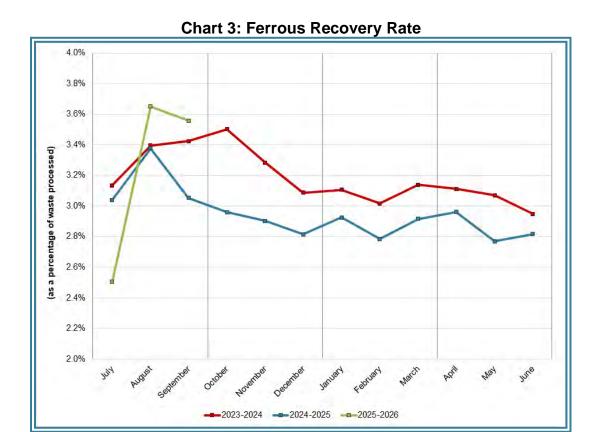
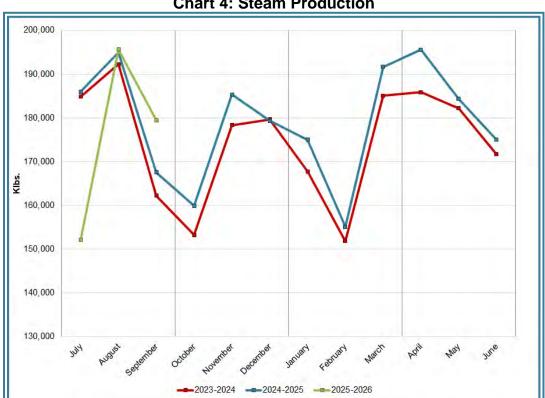
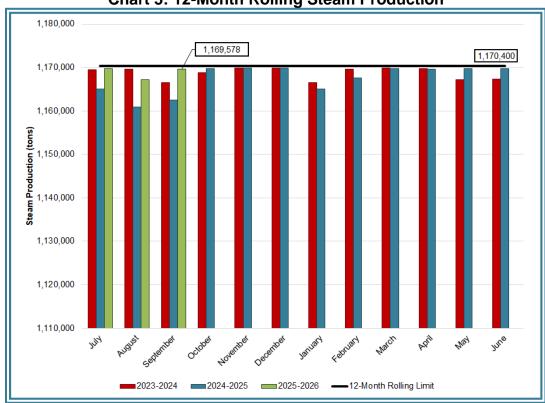




Chart 3 depicts the monthly ferrous metal recovery rate as a percentage of processed MSW tonnage. In Q1FY26, 2,867 tons of ferrous metals were recovered, which is 2.1% higher than the corresponding quarter in FY25. Despite July having a 3-year low recovery rate, Chart 3 illustrates that the ferrous recovery rate overall in Q1FY26 was comparable, at 3.2%, to the corresponding quarter in FY25 when the rate was 3.2%.

Chart 4: Steam Production

In Chart 4, the total steam production for Q1FY26 was 527,188 klbs, 4.0% lower than the corresponding quarter in FY25. The decrease in steam production was attributable to more (185 hours) offline time experienced by the Facility in July due to process limitations, paired with a lower (2.5%) HHV.

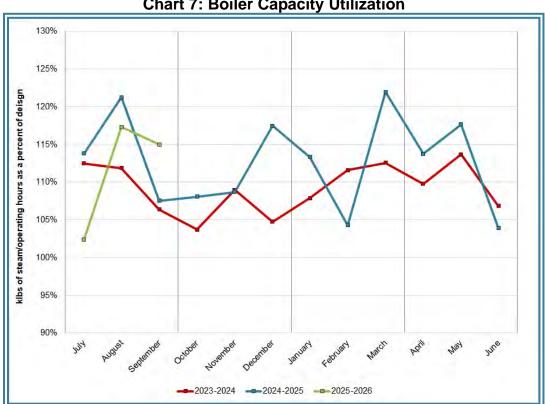
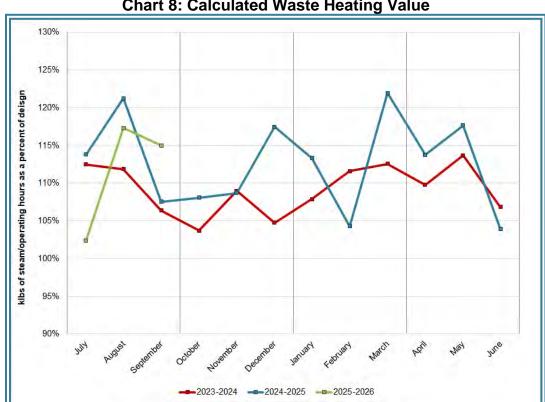

Chart 5: 12-Month Rolling Steam Production

Chart 5 depicts the 12-month rolling steam production for Q1FY26, and for the previous two (2) fiscal years. According to the Title V permit, the annual steam production for the Facility shall not exceed 1,170,400 tons based on an average value of 3.34 lbs. of steam per lb. of MSW processed, calculated monthly as the sum of each consecutive 12-month period. The Facility required Boiler No. 1 and Boiler No. 2 to experience standby time to be able to comply with the 12-month rolling steam production total. The 12-month rolling total for steam production ending in September 2025 was 1,169,578 tons, which is 99.9% of the limit. Chart 5 shows that Facility throughput, and in turn, steam and electricity production are being throttled to stay slightly below the steam production permit limit each month.

Chart 6: Steam Production Rate



In Chart 6, the conversion of raw waste tonnages into "reference tons" is another way of analyzing steam production and helps to determine whether changes are related to boiler performance or to fuel issues. "Reference tons" are adjusted to account for the calculated average fuel heating value, so that lower BTU fuel raw tonnages are adjusted upwards and vice versa. In Q1FY26, this metric tracked slightly lower at 2.81 tonssteam/tonref compared to the corresponding quarter in FY25 (2.85 tonssteam/tonref).

Chart 7: Boiler Capacity Utilization

In Chart 7, the boiler capacity utilization (BCU) refers to the total steam production in respect to the total availability. This metric demonstrates how the boilers are operating compared to the design maximum continuous rating (MCR) when the boilers are online. The BCU during Q1FY26 was 112% compared to the corresponding quarter in FY25 when the BCU was 114%.

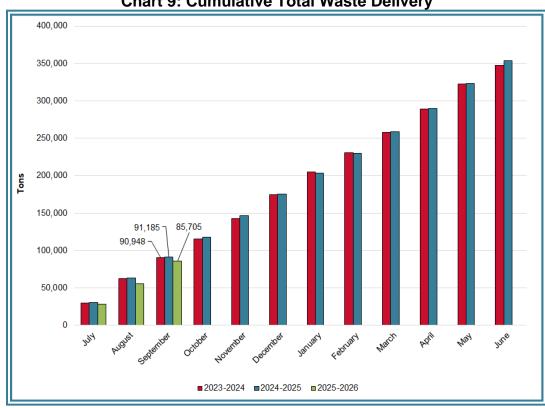
Chart 8: Calculated Waste Heating Value

Chart 8 illustrates that Q1FY26 calculated average waste heating value was lower (2.5%) at 4,752 Btu/lb than the corresponding quarter in FY25, which averaged 4,872 Btu/lb. Note that 7.461 inches of precipitation were recorded at Ronald Reagan National Airport during Q1FY26, which is 4.3 inches less than the corresponding quarter in FY25. Typically, as rainfall decreases, HHV increases, and vice versa, which was not the case during the quarter.

¹ https://www.wunderground.com/

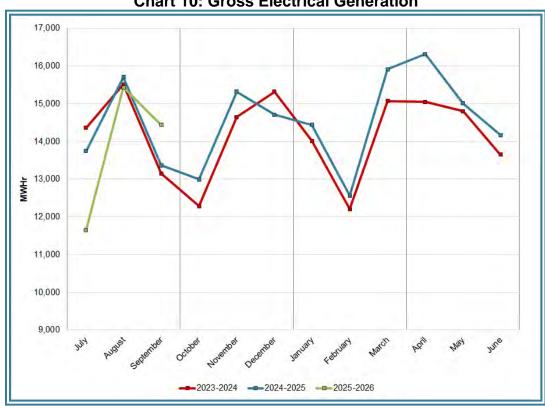
Table 2: Quarterly Performance Summaries

	Month	Waste Processed (tons)	Waste Diverted (tons)	Ash Shipped (tons)	Special Handling (Supplemental) (tons)	Ferrous Recovered (tons)	Steam Produced (klbs)	Net Electrical Generation (MWh)
	Quarterly Totals	90,265	0	17,741	1,923	2,992	539,326	35,778
Q1FY24	April-23	31,008	0	5,984	692	972	184,870	11,908
QIF124	May-23	31,745	0	6,257	702	1,078	192,261	13,048
	June-23	27,512	0	5,500	529	942	162,195	10,822
	Quarterly Totals	88,836	0	17,669	1,282	2,807	548,483	35,481
Q1FY25	April-24	30,334	0	5,872	453	922	185,970	11,311
QIF123	May-24	30,501	0	6,332	480	1,030	194,941	13,155
	June-24	28,001	0	5,465	349	855	167,572	11,015
	Quarterly Totals	88,794	0	16,912	1,486	2,867	527,188	35,760
Q1FY26	April-25	30,344	0	4,969	560	760	152,063	10,694
QIF120	May-25	29,752	0	6,060	480	1,086	195,636	12,991
	June-25	28,698	0	5,883	446	1,021	179,489	12,075
F	Y24 Totals	349,483	0	68,523	6,596	11,118	2,094,885	141,268
F	Y25 Totals	350,215	0	70,424	5,900	10,312	2,149,566	145,712
F	Y26 Totals	88,794	0	16,912	1,486	2,867	527,188	35,760

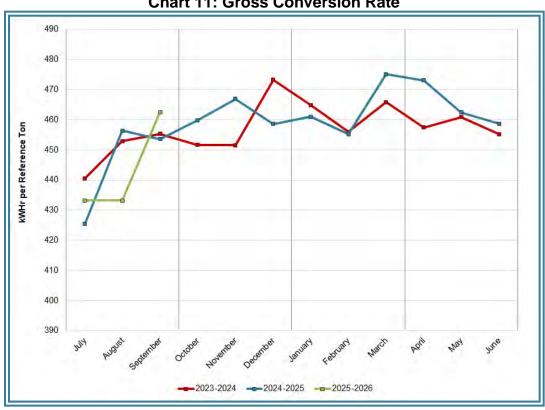

Table 2 presents the production data provided to HDR by RAAI for Q1FY26 on both a monthly and quarterly basis. For purposes of comparison, Q1FY24 and Q1FY25 are shown, as well as FY24, FY25 and FY26 Year-to-Date totals. In comparing quarterly totals, the data shows:

- Nearly identical waste was processed in Q1FY26 compared to Q1FY25, but less than Q1FY24
- Less steam was generated in Q1FY26 than Q1FY25 and Q1FY24
- More electricity (net) was generated in Q1FY26 than Q1FY25, but slightly less than Q1FY24
- More supplemental waste was received in Q1FY26 than Q1FY25, but less than Q1FY24

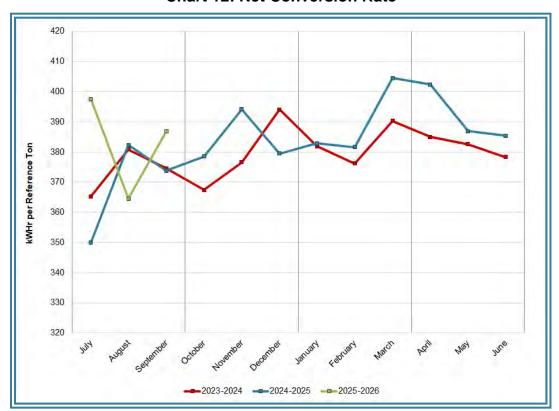
Note that the total steam generation figures presented in Table 2 do not correlate with the annual steam production limit from the Facility Permit; such limits apply on an annual rolling average, evaluated monthly.


Table 3: Waste Delivery Classification

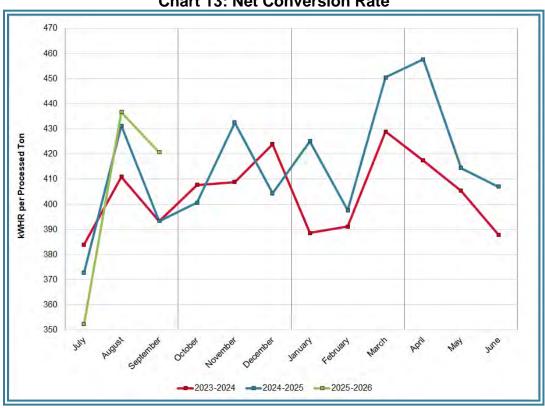
		<u>Jul</u>	Aug	Sep	Oct	Nov	Dec	<u>Jan</u>	<u>Feb</u>	<u>Mar</u>	<u>Apr</u>	<u>May</u>	<u>Jun</u>	<u>Totals</u>	% of Total
	City Waste	1,583	1,905	2,121	1,906	1,970	1,999	1,556	1,393	2,038	2,102	2,042	2,197	22,811	6.55%
7.	County Waste	2,377	2,713	2,711	2,589	2,550	2,646	2,365	2,054	2,441	2,472	2,542	2,682	30,143	8.66%
FY21	Municipal Solid Waste	22,517	26,941	24,523	22,102	19,209	25,831	22,419	20,046	25,980	25,621	25,260	24,603	285,053	81.88%
	Supplemental Waste	691	1,139	927	1,045	930	859	895	1,070	747	653	519	641	10,117	2.91%
	MSW Totals	27,169	32,698	30,282	27,642	24,659	31,336	27,234	24,562	31,207	30,848	30,363	30,123	348,124	100.00%
		<u>Jul</u>	<u>Aug</u>	<u>Sep</u>	<u>Oct</u>	Nov	<u>Dec</u>	<u>Jan</u>	<u>Feb</u>	<u>Mar</u>	<u>Apr</u>	<u>May</u>	<u>Jun</u>	<u>Totals</u>	% of Total
	City Waste	1,853	2,080	2,042	1,855	2,002	1,914	1,628	1,570	1,900	1,895	2,107	2,203	23,049	6.58%
7	County Waste	2,516	2,403	2,457	2,184	2,463	2,489	2,232	2,192	2,519	2,394	2,761	2,717	29,337	8.38%
FY22	Municipal Solid Waste	24,682	26,646	25,378	19,376	23,834	27,424	24,212	19,114	23,465	25,745	27,057	23,637	290,569	83.01%
	Supplemental Waste	688	778	479	514	534	499	448	349	626	685	756	735	7,090	2.03%
	MSW Totals	29,740	31,907	30,356	23,929	28,832	32,326	28,520	23,225	28,510	30,719	32,681	29,291	350,035	100.00%
		<u>Jul</u>	<u>Aug</u>	<u>Sep</u>	<u>Oct</u>	<u>Nov</u>	<u>Dec</u>	<u>Jan</u>	<u>Feb</u>	<u>Mar</u>	<u>Apr</u>	<u>May</u>	<u>Jun</u>	<u>Totals</u>	% of Total
	City Waste	1,841	2,020	1,874	1,827	2,046	1,872	1,880	1,566	1,829	1,887	2,035	1,913	22,590	6.43%
က	County Waste	2,339	2,471	2,454	2,188	2,448	2,333	2,453	2,092	2,444	2,104	2,656	2,571	28,552	8.13%
FY23	Municipal Solid Waste	24,434	26,977	23,660	17,994	24,827	25,487	26,656	21,209	23,673	24,530	29,037	24,013	292,500	83.32%
	Supplemental Waste	656	797	682	444	582	537	559	592	582	567	682	723	7,403	2.11%
	MSW Totals	29,270	32,265	28,670	22,454	29,905	30,229	31,548	25,460	28,527	29,087	34,410	29,220	351,045	100.00%
		<u>Jul</u>	<u>Aug</u>	<u>Sep</u>	<u>Oct</u>	<u>Nov</u>	<u>Dec</u>	<u>Jan</u>	<u>Feb</u>	<u>Mar</u>	<u>Apr</u>	<u>May</u>	<u>Jun</u>	<u>Totals</u>	% of Total
	City Waste	1,780	2,149	1,746	1,735	1,889	1,688	1,829	1,603	1,650	1,887	2,106	1,812	21,874	6.29%
4	County Waste	2,521	2,755	2,461	2,519	2,612	2,465	2,543	2,378	2,437	2,650	2,966	2,545	30,852	8.87%
FY24	Municipal Solid Waste	25,031	26,225	23,276	19,985	22,285	26,796	25,750	20,805	23,119	26,211	27,185	20,780	287,450	82.64%
	Supplemental Waste	692	702	529	628	482	471	500	492	556	505	535	503	6,596	1.90%
	MSW Totals	30,024	32,911	28,013	24,867	27,269	31,420	30,623	25,278	27,763	31,253	32,792	25,639	347,852	100.00%
		<u>Jul</u>	<u>Aug</u>	<u>Sep</u>	<u>Oct</u>	<u>Nov</u>	<u>Dec</u>	<u>Jan</u>	<u>Feb</u>	<u>Mar</u>	<u>Apr</u>	<u>May</u>	<u>Jun</u>	<u>Totals</u>	% of Total
	City Waste	1,837	1,660	1,648	1,869	1,694	1,778	1,610	1,492	1,710	1,862	2,046	1,834	21,041	5.95%
ις;	County Waste	2,640	2,738	2,619	2,946	2,611	2,715	2,549	2,205	2,305	2,394	2,628	2,552	30,902	8.73%
FY25	Municipal Solid Waste	25,456	28,049	23,255	21,665	23,669	23,957	23,405	22,533	24,306	26,016	28,077	25,604	295,994	83.65%
_	Supplemental Waste	453	480	349	397	609	432	416	372	578	635	577	602	5,900	1.67%
	MSW Totals	30,387	32,927	27,871	26,877	28,582	28,882	27,981	26,603	28,899	30,908	33,328	30,592	353,837	100.00%
		<u>Jul</u>	<u>Aug</u>	<u>Sep</u>	<u>Oct</u>	<u>Nov</u>	<u>Dec</u>	<u>Jan</u>	<u>Feb</u>	<u>Mar</u>	<u>Apr</u>	<u>May</u>	<u>Jun</u>	<u>Totals</u>	% of Total
	City Waste	1,932	1,693	1,831										5,456	6.4%
97	County Waste	2,555	2,337	2,507										7,399	8.6%
FY26	Municipal Solid Waste	23,598	22,526	25,240										71,364	83.3%
	Supplemental Waste	560	480	446										1,486	1.7%
	MSW Totals	28,645	27,037	30,023										85,705	100.0%


Chart 9: Cumulative Total Waste Delivery

As depicted in Table 3 and Chart 9, Q1FY26 total waste delivery was 6.4% lower compared to Q1FY25.


Chart 10: Gross Electrical Generation

During Q1FY26, the Facility generated 41,529 MWh (gross) of electricity compared to the corresponding quarter in FY25 generation of 42,816 MWh (gross), a 3.1% decrease. The decrease in gross electrical production is attributable to the decrease in steam production (4.0%) paired with the required standby time for process limitations which reduced the boiler online time comparatively. The significant boiler offline time (90.4 hours of unscheduled downtime, 242.8 hours of scheduled downtime, and 145.5 hours of standby time) negatively impacts the following metrics covered in Charts 11-14.


Chart 11: Gross Conversion Rate

As shown in Chart 11, the average gross electrical generation per reference ton of refuse processed during Q1FY26 was 443 kWh per reference ton, which is 0.5% less than the corresponding quarter in FY25 due to the experienced downtime.

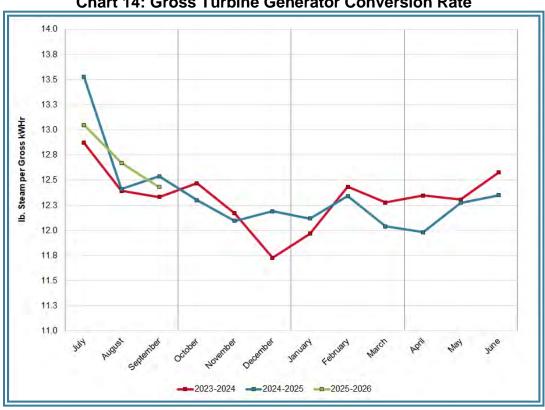

Chart 12: Net Conversion Rate

Chart 12 depicts the normalized net power generation (gross minus in-house usage). In Q1FY26, the average net electrical generation per reference ton was 381 kWh per ton, which is 3.3% lower than the corresponding quarter in FY25 due to the experienced downtime.

Chart 13: Net Conversion Rate

Chart 13 depicts the net power generation per processed ton. The net electrical generation per processed ton in Q1FY26 was 403 kWh per ton, which is 0.8% higher than corresponding quarter in FY25 due to less turbine generator downtime.

Chart 14: Gross Turbine Generator Conversion Rate

Chart 14 illustrates the quantities of steam required to generate one (1) kWh of electricity. This measure is a turbine generator performance indicator, where lower steam rates indicate superior performance. For simplification, this calculated rate is based on the average for the two turbine generators. In Q1FY26 the average pounds of steam consumed per gross kWh generated was 12.7, which is slightly lower (0.9%), and more efficient, than the corresponding guarter in FY25. The average main steam temperature during the quarter was 681.2°F, which is 4.1°F lower than the average main steam temperature of the corresponding quarter last fiscal year and 18.8°F lower than design temperature of 700 °F.

3.2 Utility and Reagent Consumptions

Table 4: Facility Utility and Reagent Consumptions

Utility	Units	Q1FY26 Total	Q1FY25 Total	Q1FY26 "Per Processed Ton" Consumption	Q1FY245 "Per Processed Ton" Consumption
Fuel Oil	Gal.	19,770	12,310	0.4	0.1
Boiler Make-up	Gal.	2,044,000	1,635,000	23.0	18.4
Cooling Tower Make-up	Gal.	48,447,933	52,917,765	545.6	595.7
Pebble Lime	Lbs.	1,418,000	1,402,000	16.0	15.8
Ammonia	Lbs.	184,000	171,000	4.1	3.8
Carbon	Lbs.	66,000	72,000	0.7	0.8

Fuel oil usage during the quarter represents approximately 0.32% of the total heat input to the boilers, which compares favorably with industry averages, and is more than the 0.20% of total heat input in Q1FY25. Fuel oil is used to stabilize combustion of wet fuel, as well as during start-up and shutdown of the boilers. Boiler makeup water usage during the quarter represents 3.2% of steam flow, which is higher than the boiler makeup in Q1FY25 (2.5% of steam flow). Higher boiler makeup quantities are indicative of increased steam leakage.

In comparing Q1FY26 to Q1FY25 on a per processed ton consumption basis:

- The total fuel oil consumption rate was 61% higher
- The boiler make-up water consumption rate was 25% higher
- The cooling tower make-up water consumption rate was 8.4% lower
- The total pebble lime consumption rate was 1.1% higher
- The ammonia consumption rate was 7.6% higher
- The carbon consumption rate was 8.3% lower

The increase in fuel oil consumption is primarily attributable to the increased number of start-ups and shutdowns in Q1FY26 (14 events) compared to Q1FY25 (7 events).

3.3 Safety & Environmental Training

The Facility experienced one (1) OSHA recordable accidents and no First Aid Accidents during Q1FY26. The OSHA recordable incident occurred on September 30th when an employee fell in the drainage trenches on the lower level and bruised their leg. RAAI operated 369 days without an OSHA recordable accident prior to the September 30, 2025 accident. Safety trainings were conducted during the quarter with themes as follows:

July 2025

Emergency Action Plan

August 2025

Hearing Conservation

September 2025

Portable Fire Extinguishers

4.0 Facility Maintenance

Throughout the quarter, regular routine and preventative maintenance was performed. HDR considers that the Facility is implementing an effective maintenance regimen, and is performing routine and preventative maintenance, along with selected equipment replacements in a timely manner. RAAI monthly maintenance reports provide a detailed account of the maintenance performed. Beginning on July 1, 2025, Boiler No. 2 experienced 64.4 hours of downtime for a scheduled cleaning outage. Some significant maintenance items completed during the cleaning outage are:

- Replaced the discharger drive cylinder
- Repaired under fire air fan termination
- Repaired auxiliary burner fuel control valve

Beginning on July 21, 2025, Boiler No. 1 experienced 76.0 hours of downtime for a scheduled cleaning outage. Some significant maintenance items completed during the cleaning outage are:

- Repaired holes in baghouse hopper
- Replaced ash discharger vibrator, discharger screw and gearbox
- Replaced baghouse north collection screw

Beginning on September 12, 2025, Boiler No. 3 experienced 102.4 hours of downtime for a scheduled minor outage. Some significant maintenance items completed during the cleaning outage are:

- Rebuilt second pass hopper due to blasting damage
- Replaced as needed grate bars and J bars
- Patched holes in feed chute hopper, skin casing, and ID fan outlet duct
 In addition to the scheduled cleaning outages, RAAI reports that 891 preventative
 maintenance actions were completed during the quarter.

4.1 Availability

Facility availabilities for Q1FY26 are shown in Table 5. According to RAAI reports, the average availability for Boiler Nos. 1, 2, and 3 for Q1FY26 was 93.7%, 96.5%, and 93.6%, respectively. The three-boiler average availability during the quarter was 94.6%, which is excellent compared to industry standard averages and excludes 146.0 total hours of standby downtime experienced by the boilers in July 2025.

According to RAAI reports, the average availabilities for Turbine Generator 1 and 2 for Q1FY26 was 99.1% and 99.8%, respectively. Note that 48.0 hours of standby time was experienced by the Turbine Generators during the quarter and does not factor into overall availability.

Table 5: Quarterly Facility Unit Availabilities

Availability	Q1FY26 Average
Boiler No. 1	93.7%
Boiler No. 2	96.5%
Boiler No. 3	93.6%
Avg.	94.6%
Turbine No. 1	99.1%
Turbine No. 2	99.8%
Avg.	99.5%

Table 6: Boiler Downtime - Q1FY26

Boiler Number	Outage Begin Date	Outage End Date	Hours Unavailable	Downtime Classification	Reason Unavailable	
2	7/1/2025	7/3/2025	64.4	Scheduled	Scheduled Cleaning	
3	7/1/2025	7/1/2025	10.5	Unscheduled	FD Fan Failure	
2	7/4/2025	7/4/2025	7.0	Unscheduled	Ash Discharger Pluggage	
1	7/21/2025	7/24/2025	76.0	Scheduled	Scheduled Cleaning	
1	7/25/2025	7/29/2025	104.0	Standby	Permit Compliance	
2	7/29/2025	7/31/2025	41.5	Standby	Permit Compliance	
1	8/20/2025	8/20/2025	1.7	Unscheduled	Switchgear Failure	
2	8/20/2025	8/20/2025	2.9	Unscheduled	Switchgear Failure	
3	8/20/2025	8/20/2025	4.4	Unscheduled	Switchgear Failure	
1	8/26/2025	8/28/2025	42.9	Unscheduled	Economizer Tube Leak	
1	8/29/2025	8/29/2025	14.4	Unscheduled	ID Fan Failure	
3	9/12/2025	9/18/2025	102.4	Scheduled	Minor Outage	
1	9/25/2025	9/25/2025	3.3	Unscheduled	Switchgear Failure	
2	9/25/2025	9/25/2025	3.3	Unscheduled	Switchgear Failure	
Total Uns	cheduled Dow	ntime			90.4 Hours	
Total Sch	eduled Downti	me		242.8 Hours		
Total Star	ndby Downtime	е		145.5 Hours		
Total Dow	/ntime				478.7 Hours	

Table 7: Turbine Generator Downtime - Q1FY26

Turbine Generator Number	Outage Begin Date	Outage End Date	Hours Unavailable	Downtime Classification	Reason Unavailable			
2	7/23/2025	7/24/2025	48.0	Standby	Boiler Outage - No Steam			
1	8/20/2025	8/20/2025	2.5 Unscheduled		Switchgear Failure			
1	8/27/2025	8/27/2025	17.0	Unscheduled	Condenser Tube Failure			
2	8/20/2025	8/20/2025	3.9	Unscheduled	Switchgear Failure			
Total Unsched	duled Downtin	ne	23.4 Hours					
Total Schedul	led Downtime		0.0 Hours					
Total Standby	Downtime		48.0 Hours					
Total Downtin	ne		71.4 Hours					

4.2 Facility Housekeeping

RAAI is performing Facility housekeeping and maintaining plant cleanliness in accordance with acceptable industry practices. A site walkdown was conducted in October 2025. Photos of interest from the walkdown are depicted in Appendix B. The Facility housekeeping ratings from the October 2025 walkdown are presented in Table 8.

Table 8: Facility Housekeeping Ratings – October 2025

Table of Table	ty Houseksepin		
Facility Area	Acceptable	Needs Improvement	Unacceptable
Tipping Floor	$\sqrt{}$		
Citizen's Drop-off Area	\checkmark		
Tipping Floor Truck Exit	$\sqrt{}$		
Front Parking Lot	$\sqrt{}$		
Rear Parking Lot	$\sqrt{}$		
Boiler House Pump Room	$\sqrt{}$		
Lime Slurry Pump Room	$\sqrt{}$		
Switchgear Area	$\sqrt{}$		
Ash Load-out Area	$\sqrt{}$		
Vibrating Conveyor Area	$\sqrt{}$		
Ash Discharger Area	$\sqrt{}$		
Cooling Tower Area	$\sqrt{}$		
Truck Scale Area	$\sqrt{}$		
SDA/FF Conveyor Area	$\sqrt{}$		
SDA Penthouses	$\sqrt{}$		
Lime Preparation Area			
Boiler Drum Levels	$\sqrt{}$	_	
Turbine Room			
Electrical Room			

5.0 Environmental

The air pollution control equipment-maintained emission concentrations well within the established regulations. Average Continuous Emission Monitoring System (CEMS) data collected for each monthly period during Q1FY26 are summarized in Appendix A. The Facility experienced no permit deviations during Q1FY26. As of September 30, 2025, the Facility has operated 134 days without an environmental excursion.

5.1 Nitrogen Oxide Emissions

During Q1FY26, the monthly emission concentrations of nitrogen oxides (NO_x) averaged 86.9 ppm, 85.5 ppm, and 85.5 ppm for Boiler Nos. 1, 2, and 3, respectively. All stack NO_x concentrations remain below the permit limit (110 ppm, 24-hr average, @ 7% O₂) implemented after the installation of the LN system. The ammonia consumption rate during the quarter was 2.1 lbs/ton, which is on the higher end compared to historical consumption which have ranged in 1.9 lbs/ton to 2.1 lbs/ton since the implementation of the LN system on all boilers was complete in 2022.

5.2 Sulfur Dioxide Emissions

During Q1FY26 the monthly emission concentration of stack sulfur dioxide (SO_2) averaged 2.0 ppm, 0.3 ppm, and 0.3 ppm for Boiler Nos. 1, 2, and 3, respectively. All these stack SO_2 concentrations are significantly below the permit limit of 29 ppm @ 7% O_2 .

5.3 Carbon Monoxide Emissions

During Q1FY26, the monthly average CO emission concentrations on Boiler Nos. 1, 2, and 3 were 25.3 ppm, 27.3 ppm, and 20.0 ppm, respectively, and all are well within permit limits (100 ppmdv, 4-hour average).

5.4 Opacity

During Q1FY26, the average opacities on Boiler Nos. 1, 2, and 3 were 0.8%, 1.0%, and 2.1%, respectively, which are all significantly below the 10% (6-minute) average permit limit.

5.5 Daily Emissions Data

Appendix A, Tables 10, 11, and 12 tabulate the monthly average, maximum, and minimum emissions data for each unit during Q1FY26. Excursions appear in bold print. It should be noted that these tabulations of monthly averages, reported here for informational purposes, are based on tabulations of daily averages. These averages do not correlate with official reports to the regulatory agencies because of differences in averaging times and other technical differences required by agency report formats.

5.6 Ash System Compliance

Results from the TCLP testing conducted in March 2025 and September 2025 are depicted in Table 10 and Chart 16 below. RAAI continued to sample ash monthly in-house, and document pH readings and adjust lime feed rate as needed. The results for the in-house ash pH tests are depicted below in Chart 16 where each quarter is represented by the average of the respective monthly readings. In Q1FY26, the average ash pH for in-house tests was 9.2, which falls within the target range of 8 to 11.

Table 9: Comparison of Statistical Results and Regulatory Thresholds for Metal Analytes

Metals	90% Upper Confidence (March 2025)	90% Upper Confidence (Sept 2025)	Regulatory Threshold (mg/L)	% of Threshold (March 2025)	% of Threshold (Sept 2025)	
Arsenic	0.050	0.050	5.0	1.0%	1.0%	
Barium	0.844	0.766	100.0	0.8%	0.8%	
Cadmium	0.130	0.210	1.0	13.0%	21.0%	
Chromium	0.050	0.100	5.0	1.0%	2.0%	
Lead	0.080	0.180	5.0	1.6%	3.6%	
Mercury	0.0004	0.0004	0.2	0.2%	0.2%	
Selenium	0.050	0.006	1.0	5.0%	0.6%	
Silver	0.050	0.050	5.0	1.0%	1.0%	

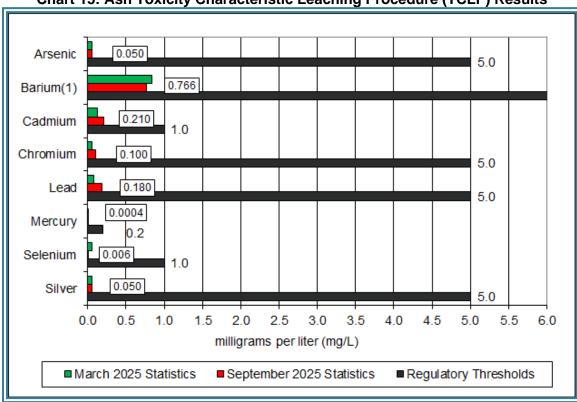
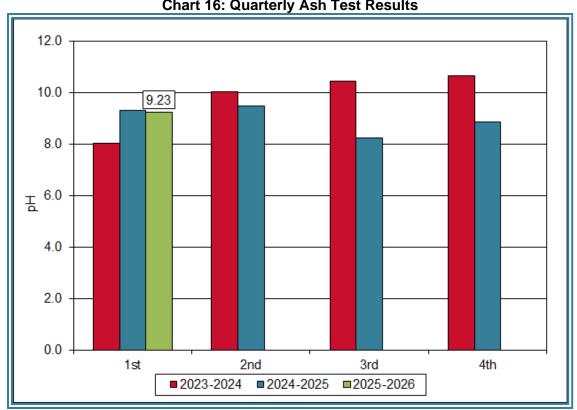



Chart 15: Ash Toxicity Characteristic Leaching Procedure (TCLP) Results

Note: The regulatory threshold for Barium is 100 mg/L

APPENDIX A FACILITY CEMS DATA

Table 10: Boiler No. 1 Monthly Summary for Reportable Emissions Data

Group#-Channel#		G8-C35	G8-C28	G8-C8	G8-C4	G8-C12	G8-C34	G8-C37	G8-C40	G8-C39
Long Descrip.		U-1 Steam	U-1 Econ	U-1 Stack	U-1 Stack	U-1 Stack	U-1 Opaci	U-1 FF In	U-1 Carbo	U-1 Lime
Short Descrip.		SteamFl	SO ₂ ec	SO ₂ sc	COsc	NO _x sc	Opacity	FF InTemp	Carblnj	LimeFlo w
Units		K#/Hr	ppmc	ppm	ppmc	ppmc	%	deg F	#/hr	gpm
Rang	Range		0-2000	0-500	0-4000	0-1000	0-100	100-500	0-50	0-20
	AVG	79.5	21.0	2.0	24.0	88.0	0.5	297.0	10.4	3.3
Jul – 25	Max	92.0	77.0	3.0	44.0	91.0	0.9	298.0	12.0	4.1
	Min	65.8	7.0	0.0	13.0	85.0	0.0	286.0	10.2	2.8
Aug – 25	AVG	91.6	51.0	2.0	27.0	90.0	1.9	298.0	10.3	3.9
	Max	92.8	73.0	6.0	38.0	96.0	2.5	300.0	10.8	4.6
	Min	88.7	36.0	1.0	11.0	87.0	0.8	296.0	10.2	3.6
Sept - 25	AVG	89.7	26.0	2.0	25.0	87.0	0.1	298.0	10.3	3.8
	Max	93.4	44.0	3.0	39.0	91.0	2.3	298.0	10.5	4.2
	Min	78.8	14.0	0.0	15.0	81.0	0.0	296.0	10.3	3.5
Quarter Average		86.9	32.7	2.0	25.3	88.3	0.8	297.7	10.3	3.7
Quarter Max Value		93.4	77.0	6.0	44.0	96.0	2.5	300.0	12.0	4.6
Quarter Min Value		65.8	7.0	0.0	11.0	81.0	0.0	286.0	10.2	2.8
Limits:		98	NA	29	100	110	10	331	12(a)	

⁽a) Carbon flow limit is a minimum value

⁽b) Limit for NOx is based on an average daily limit

^{*} Note: The data reported herein represent 24-hour average data for all parameters. Emissions excursions that are measured on shorter time intervals (i.e., 4-hour block averages for CO) do not correlate with the 24-hour average data reported above.

Table 11: Boiler No. 2 Monthly Summary for Reportable Emissions Data

Group#-Channel#		G8-C35	G8-C28	G8-C8	G8-C4	G8-C12	G8-C34	G8-C37	G8-C40	G8-C39
Long Descrip.		U-2 Steam	U-2 Econ	U-2 Stack	U-2 Stack	U-2 Stack	U-2 Opaci	U-2 FF In	U-2 Carbo	U-2 Lime
Short Descrip.		SteamFl	SO ₂ ec	SO ₂ sc	COsc	NO _x sc	Opacity	FF InTemp	Carblnj	LimeFlo w
Units		K#/Hr	ppmc	ppm	ppmc	ppmc	%	deg F	#/hr	gpm
Range		0-100	0-2000	0-500	0-4000	0-1000	0-100	100-500	0-50	0-20
	AVG	78.4	49.0	1.0	25.0	88.0	1.1	295.0	10.4	3.3
Jul – 25	Max	85.8	75.0	6.0	53.0	97.0	1.3	311.0	11.3	3.9
	Min	66.7	27.0	0.0	17.0	80.0	0.0	279.0	10.3	2.8
Aug – 25	AVG	89.8	42.0	0.0	27.0	89.0	1.4	296.0	10.3	4.0
	Max	91.7	62.0	3.0	38.0	90.0	1.6	297.0	10.9	4.6
	Min	83.1	31.0	0.0	14.0	86.0	1.1	289.0	10.2	3.7
Sept - 25	AVG	88.4	36.0	0.0	30.0	89.0	0.6	298.0	10.2	3.9
	Max	92.1	50.0	2.0	41.0	91.0	1.5	299.0	10.7	4.2
	Min	78.0	26.0	0.0	15.0	88.0	0.2	296.0	10.1	3.7
Quarter Average		85.5	42.3	0.3	27.3	88.7	1.0	296.3	10.3	3.7
Quarter Max Value		92.1	75.0	6.0	53.0	97.0	1.6	311.0	11.3	4.6
Quarter Min Value		66.7	26.0	0.0	14.0	80.0	0.0	279.0	10.1	2.8
Limits:		98	NA	29	100	110	10	331	12(a)	

⁽a) Carbon flow limit is a minimum value

⁽b) Limit for NOx is based on an average daily limit

^{*} Note: The data reported herein represent 24-hour average data for all parameters. Emissions excursions that are measured on shorter time intervals (i.e., 4-hour block averages for CO) do not correlate with the 24-hour average data reported above.

Table 12: Boiler No. 3 Monthly Summary for Reportable Emissions Data

Group#-C	hannel#	G8-C35	G8-C28	G8-C8	G8-C4	G8-C12	G8-C34	G8-C37	G8-C40	G8-C39
Long Descrip.		U-3 Steam	U-3 Econ	U-3 Stack	U-3 Stack	U-3 Stack	U-3 Opaci	U-3 FF In	U-3 Carbo	U-3 Lime
Short Descrip.		SteamFl	SO ₂ ec	SO ₂ sc	COsc	NO _x sc	Opacity	FF InTemp	Carblnj	LimeFlo w
Units		K#/Hr	ppmc	ppm	ppmc	ppmc	%	deg F	#/hr	gpm
Ran	ge	0-100	0-2000	0-500	0-4000	0-1000	0-100	100-500	0-50	0-20
	AVG	79.1	34.0	1.0	19.0	87.0	2.1	299.0	10.3	3.5
Jul – 25	Max	89.8	68.0	7.0	34.0	89.0	2.5	299.0	11.0	4.2
	Min	66.1	20.0	0.0	6.0	85.0	1.7	296.0	10.2	2.9
	AVG	90.2	31.0	0.0	22.0	87.0	2.4	299.0	10.2	4.0
Aug – 25	Max	91.9	46.0	1.0	30.0	89.0	2.6	299.0	10.4	4.7
	Min	84.3	18.0	0.0	11.0	83.0	1.9	296.0	10.2	3.7
Sept - 25	AVG	87.3	43.0	0.0	19.0	88.0	1.9	299.0	10.4	4.1
	Max	92.5	74.0	2.0	33.0	90.0	2.5	299.0	11.5	4.5
	Min	77.9	19.0	0.0	9.0	84.0	0.9	299.0	10.3	3.8
Quarter Average		85.5	36.0	0.3	20.0	87.3	2.1	299.0	10.3	3.9
Quarter Ma	ax Value	92.5	74.0	7.0	34.0	90.0	2.6	299.0	11.5	4.7
Quarter Mi	n Value	66.1	18.0	0.0	6.0	83.0	0.9	296.0	10.2	2.9
Limits:		98	NA	29	100	110	10	331	12(a)	

⁽a) Carbon flow limit is a minimum value

⁽b) Limit for NOx is based on an average daily limit

^{*} Note: The data reported herein represent 24-hour average data for all parameters. Emissions excursions that are measured on shorter time intervals (i.e., 4-hour block averages for CO) do not correlate with the 24-hour average data reported above.

APPENDIX B SITE PHOTOS - October 2025

Figure 1: Cooling tower siding, grounding wire, nozzle flow

Figure 2: Circulating Water Pump housing is corroded

Figure 3: Siding and window repairs on East side of building

Figure 4: Spare transformer on site

Figure 5: Residential waste bin

Figure 6: Ash canopy appears in good condition

Figure 7: Temporary pump in service for trench drainage to Cooling Tower basin

Figure 8: New Circulation Water pump installed

Figure 9: Filtration tanks for Reverse Osmosis System

Figure 10: Blow down tank

Figure 11: Firing aisle - no issues observed

Figure 12: Boiler No. 1 new Run 2 grate drive cylinder

Figure 13: Boiler No. 2 Economizer Rotary Sootblowers

Figure 15: Refractory damaged around Rotary Sootblower G9B-11 on Boiler No. 1

Figure 17: Steam leak repaired on west side of Boiler No. 2 – Resolved Deficiency

Figure 14: Boiler No. 2 lagging detached and obstructing walkway

Figure 16: Minor leak on Boiler No. 1 external piping has been repaired – Resolved Deficiency

Figure 18: Insulation added around steam isolation valve on Boiler No. 3. – Resolved Deficiency

Figure 19: Seal air disconnected on Boiler No. 3 Rotary Sootblower G9-B09

Figure 21: Insulation and lagging damaged around Boiler No. 3 Steam Drum

Figure 23: Ferrous drum magnet with ongoing maintenance at the time of HDR site visit

Figure 20: Penthouse lights are in service over Boiler No. 1 – Resolved Deficiency

Figure 22: External Tube Leak on Boiler No. 2 right wall repaired

Figure 24: Cooling Water Tower decking clear of equipment and maintenance items

Figure 25: Unit 2 SDA Penthouse Enclosure

Figure 27: Debris and flyash covering decking inside Baghouse No. 1 Compartment Aisle

Figure 29: Unit 2 fly ash double dump valves operating properly

Figure 26: Unit 1 lower lime silo floor with significant corrosion – New Deficiency

Figure 28: Unit 1 baghouse hopper heaters on and in the manual position

Figure 30: Settling basin - no issues observed